各位老铁们好,相信很多人对低压电工三相电机正反转都不是特别的了解,因此呢,今天就来为大家分享下关于低压电工三相电机正反转以及三相电机的正反转接法和控制 电工专业的看过来吧的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!
380V电机正反转电路图,怎么才能弄明白四级以上电工回答
380V电机正反转电路图:
QS:总电源开关
KM1:正转接触器。KM2:反转接触器。FR:热继电器。M3~:三相异步电机。
PE:电机外壳接地。FU:控制线路熔断器SB1:停止按钮SB2:反转启动按钮
SB3:正转启动按钮
动作原理:
总电源开关接通后,按下SB2,KM2线圈得电,KM2主触点接通,电机反转,同时KM2常开辅助触点接通,这时放松SB2,但由于KM2常开辅助触点接通,所以KM2还是吸合的.这叫自锁.
按下SB1:由于此时KM2线圈失电,KM2主触点断开,电机停止,同时KM2常开辅助触点也断开,这时放松SB1,但由于KM2常开辅助触点已断开,所以KM2不会从新吸合.
按下SB3(正转)和电机反转的原理是一样的.
这里SB2常闭触点作用是:当按下SB2时,如果再同时按SB3,但KM1还是不会得电,这叫按钮互锁。KM2常闭触点作用是:当KM2吸合时,KM1不可能得电.这叫接触器互锁.
所以这里有两个互锁.这叫双重联锁电路.因为正反转电路中绝不允许两个接触器同时吸合,否则会引起主电路短路.
FR热继电器作用.电机启动后,当主电路中电流太大电机过载,FR中的常闭触点会断开,从而把控制线路断开.给电动机起过载保护作用.
电动机正反转的控制线路
带短路保护、过载保护接触器联锁正反转线路
带短路保护、过载保护按钮联锁正反转线路
带短路保护、过载保护双重联锁正反转线路
热继电器FR起到过载保护。
熔断器FU1、FU2起到短路过流保护。
交流接触器KM1、KM2起到欠压失压保护。
热继电器工作原理:
热继电器的工作原理是由流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电动机的过载保护。鉴于双金属片受热弯曲过程中,热量的传递需要较长的时间,因此,热继电器不能用作短路保护,而只能用作过载保护热继电器的过载保护。继电器作为电动机的过载保护元件,以其体积小,结构简单、成本低等优点在生产中得到了广泛应用。
它由发热元件、双金属片、触点及一套传动和调整机构组成。发热元件是一段阻值不大的电阻丝,串接在被保护电动机的主电路中。双金属片由两种不同热膨胀系数的金属片辗压而成。图中所示的双金属片,下层一片的热膨胀系数大,上层的小。当电动机过载时,通过发热元件的电流超过整定电流,双金属片受热向上弯曲脱离扣板,使常闭触点断开。由于常闭触点是接在电动机的控制电路中的,它的断开会使得与其相接的接触器线圈断电,从而接触器主触点断开,电动机的主电路断电,实现了过载保护。
热继电器动作后,双金属片经过一段时间冷却,按下复位按钮即可复位。
熔断器工作原理:
是指当电流超过规定值时,以本身产生的热量使熔体熔断,断开电路的一种电器。熔断器是根据电流超过规定值一段时间后,以其自身产生的热量使熔体熔化,从而使电路断开;运用这种原理制成的一种电流保护器。熔断器广泛应用于高低压配电系统和控制系统以及用电设备中,作为短路和过电流的保护器,是应用最普遍的保护器件之一。
熔断器主要由熔体、外壳和支座3部分组成,其中熔体是控制熔断特性的关键元件。熔体的材料、尺寸和形状决定了熔断特性。熔体材料分为低熔点和高熔点两类。
交流接触器的工作原理:
当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时动作,主触点闭合,和主触点机械相连的辅助常闭触点断开,辅助常开触点闭合,从而接通电源。当线圈断电时,吸力消失,动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,和主触点机械相连的辅助常闭触点闭合,辅助常开触点断开,从而切断电源。
当电路中出现欠压或失压情况时,静铁芯产生电磁吸力不足以将动铁芯吸合,从而使得触头系统复位,达到欠压失压保护作用。
交流接触器主要由四部分组成:(1)电磁系统,包括吸引线圈、动铁芯和静铁芯;(2)触头系统,包括三组主触头和一至两组常开、常闭辅助触头,它和动铁芯是连在一起互相联动的;(3)灭弧装置,一般容量较大的交流接触器都设有灭弧装置,以便迅速切断电弧,免于烧坏主触头;(4)绝缘外壳及附件,各种弹簧、传动机构、短路环、接线柱等。
接触器联锁正反转线路虽工作安全可靠但操作不方便,正反转切换时必须先按下停止按钮。
按钮联锁正反转线路虽操作方便但容易产生电源两相短路故障。
双重联锁正反转线路则兼有两种联锁控制线路的优点,操作方便,工作安全可靠
谁知道,三相三线的A,C两相接反是什么情况。计量值还对吗
在A,C两相接反的情况下,计量值还是对的
因为在输出的电流所做的功(电功的度KW/H)发生变化时,计量将跟随着变化。
三相交流电
目前,我国生产、配送的都是三相交流电。三相交流电有很多优越性,比如使用三相交流电的电动机、发电机节能节材、维护方便……
三相交流电是三个交流电的组合,频率相同,只是相位彼此相差120˙
发电机的转子为一磁铁,当它以匀角速度旋转时,每一个定子线圈都会产生交变电动势。三个线圈产生的交变电动势的幅值和频率都相同,位相彼此差120°。
工业上用的三相交流电,有的直接来自三相交流发电机,但大多数还是来自三相变压器,对于负载来说,它们都是三相交流电源,在低电压供电时,多采用三相四线制。
在三相四线制供电时,三相交流电源的三个线圈采用星形(Y形)接法,即把三个线圈的末端X、Y、Z连接在一起,成为三个线圈的公用点,通常称它为中点或零点,并用字母O表示。供电时,引出四根线:从中点O引出的导线称为中线或零线;从三个线圈的首端引出的三根导线称为A线、B线、C线,统称为相线或火线。在星形接线中,如果中点与大地相连,中线也称为地线。我们常见的三相四线制供电设备中引出的四根线,就是三根火线一根地线。
每根火线与地线间的电压叫相电压,其有效值用UA、UB、UC表示;火线间的电压叫线电压,其有效值用UAB、UBC,UCA表示,因为三相交流电源的三个线圈产生的交流电压位相相差120°,三个线圈作星形连接时,线电压等于相电压的倍。我们通常讲的电压是220伏,380伏,就是三相四线制供电时的相电压和线电压。但三相四级制供电时,也有下表所示的几种电压,用电时应予注意。
在日常生活中,我们接触的负载,如电灯、电视机、电冰箱、电风扇等家用电器及单相电动机,它们工作时都是用两根导线接到电路中,都属于单相负载。在三相四线制供电时,多个单相负载应尽量均衡地分别接到三相电路中去,而不应把它们集中在三根电路中的一相电路里。如果三相电路中的每一根所接的负载的阻抗和性质都相同,就说三根电路中负载是对称的。在负载对称的条件下,因为各相电流间的位相彼此相差120°,所以,在每一时刻流过中线的电流之和为零,把中线去掉,用三相三线制供电是可以的。但实际上多个单相负载接到三相电路中构成的三相负载不可能完全对称。在这种情况下中线显得特别重要,而不是可有可无。有了中线每一相负载两端的电压总等于电源的相电压,不会因负载的不对称和负载的变化而变化,就如同电源的每一相单独对每一相的负载供电一样,各负载都能正常工作。若是在负载不对称的情况下又没有中线,就形成不对称负载的三相三线制供电。由于负载阻抗的不对称,相电流也不对称,负载相电压也自然不能对称。有的相电压可能超过负载的额定电压,负载可能被损坏(灯泡过亮烧毁);有的相电压可能低些,负载不能正常工作(灯泡暗淡无光)。像图中那样的情况随着开灯、关灯等原因引起各相负载阻抗的变化。相电流和相电压都随之而变化,灯光忽暗忽亮,其他用电器也不能正常工作,甚至被损坏。可见,在三相四线制供电的线路中,中线起到保证负载相电压时称不变的作用,对于不对称的三相负载,中线不能去掉,不能在中线上安装保险丝或开关,而且要用机械强度较好的钢线作中线。
而楼上所说的电机就会反转的问题,是正确的。这与三相交流电路有关
由三相交流电源供电的电路。简称三相电路。三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,最常用的是三相交流发电机。三相发电机的各相电压的相位互差120°。它们之间各相电压超前或滞后的次序称为相序。三相电动机在正序电压供电时正转,改为负序电压供电时则反转。因此,使用三相电源时必须注意其相序。一些需要正反转的生产设备可通过改变供电相序来控制三相电动机的正反转。
三相电源连接方式常用的有星形连接(即Y形)和三角形连接(即△形)。从电源的3个始端引出的三条线称为端线(俗称火线)。任意两根端线之间的电压称为线电压。星形连接时线电压为相电压的倍;3个线电压间的相位差仍为120°,它们比3个相电压各超前30°。星形连接有一个公共点,称为中性点。三角形连接时线电压与相电压相等,且3个电源形成一个回路,只有三相电源对称且连接正确时,电源内部才没有环流。
三相负载按三相阻抗是否相等分为对称三相负载和不对称三相负载。三相电动机、三相电炉等属前者;一些由单相电工设备接成的三相负载(如生活用电及照明用电负载),通常是取一条端线和由中性点引出的中线(俗称地线)供给一相用户,取另一端线和中线给另一相用户。这类接法三条端线上负载不可能完全相等,属不对称三相负载。三相负载的连接方式也有星形与三角形之分。
三相电路的瞬时功率(见交流电路中的功率)等于各相瞬时功率之和。即
P=PA+PB+PC
式中下标分别表示各相。对于对称电路,
此时UA=UB=UC=UP,式中UP、IP、U、I分别是相电压、相电流、线电压和线电流的有效值。对称三相电路的平均功率与其瞬时功率相等。其无功功率为UIsin,视在功率为。对称三相电路的瞬时功率为常量,因此,正常运行时带动三相发电机的原动机所受的反力矩和三相电动机的输出转矩都是平稳的。
三相电机的正反转接法和控制 电工专业的看过来吧
1、电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
2、主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两正向启动过程对辅助常闭触头就叫联锁或互锁触头。
好了,文章到此结束,希望可以帮助到大家。